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Abstra
t. Re
ently, 
omputer-aided diagnosis tools for dementia using

Magneti
 Resonan
e Imaging s
ans have been su

essfully proposed to

support reliable resear
hes on intervention, prevention, and treatments of

Alzheimer's disease. However, is ne
essary to improve the performan
e of


lassi�
ation ma
hines. As an alternative, a supervised kernel framework

for learning metri
s that enhan
es 
onventional ma
hines and supports

the diagnosis of dementia is proposed. Therefore, the proposed metri


learning produ
es dis
riminative features aimed at improving the dis-


rimination neurologi
al 
lasses. The testing stage is 
arried out using

the ADNI dataset to train the 
ommonly used supervised 
lassi�
ation

ma
hine, namely, support ve
tor ma
hine (SVM). Attained 
lassi�
ation

results (57.6% average a

ura
y) prove that our framework is able to

dis
riminate dementia patients.

1 Introdu
tion

For Alzheimer's Disease (AD), the use of stru
tural magneti
 resonan
e imaging

(MRI) data be
ame a suitable alternative to develop 
omputer-aided diagnosis

(CAD) tools due to its wide availability and non-invasiveness [2℄. Nonetheless, the

most of resear
hes has been fo
using on dis
riminating pathologies with a variety

of 
lassi�
ation tools from neuroimaging data, geneti
 information, and other

biomarkers. Hen
e, insu�
ient attention has been given to build appropriate

metri
s from the training data that 
ould maximize the performan
e of several


lassi�ers [4℄.

Some approa
hes that introdu
e a metri
 learning stage into the MRI dis-


rimination pro
ess are the following: In the 
ase of linear models, [6℄ sta
ks

PCA matri
es and logisti
 regressors in a multi-layer ar
hite
ture. However, the

generative properties of the resulting ma
hine highlight over the dis
riminative

ones. In addition, when handling data distributions with nonlinear stru
tures,

linear models show inherently limited performan
e and 
lass separation 
apa-

bility. On the other hand, the most popular nonlinear models are built through

kernel-based methods. In [7℄ 
ombines three di�erent biomarkers using a simple-

while-e�e
tive multiple-kernel learning for improving the SVM-based 
lassi�
a-

tion of AD and MCI. However, optimization of kernel weighting is 
arried out



by a grid sear
h, whi
h is very time 
onsuming when the number of features and

samples gets large [3℄.

In order to enhan
e the MRI dis
rimination, we introdu
e a kernel-based

metri
 learning framework for supporting the dementia diagnosis task. The pro-

posed approa
h sear
hes for proje
tions into more dis
riminative spa
es so that

the resulting data distribution resembles as mu
h as possible the label distri-

bution. Hen
e, we in
orporate kernel theory for assessing the a�nity between

proje
ted data and available labels through the Center Kernel Alignment (CKA)


riterion. To this end, we use morphologi
al measurements (volume, area, and

thi
kness) 
omputed by the widely used FreeSurfer suite [5℄. The proposed ap-

proa
h is tested on MRI data dis
rimination using dementia 
ategories (namely,

Normal Control (NC), Mild Cognitive Impairment (MCI) and Alzheimer's Dis-

ease (AD)).

2 Proposed Algorithm Des
ription

2.1 Centered kernel alignment

Kernel fun
tions are bivariate measures of similarity, whi
h are based on the

inner produ
t between samples embedded in a Hilbert spa
e. For an input feature

spa
e X , a kernel κX :X×X →R
+
is a positive-de�nite fun
tion that de�nes an

impli
it mapping ϕX :X →HX , aiming to embed a data point x∈X into the

element ϕX(x)∈HX of some Reprodu
ing Kernel Hilbert Spa
e (RKHS) (noted

as HX ). Within a supervised learning framework, a kernel κL:L×L→R
+

is

also introdu
ed that a
ts over the target spa
e L to a

ount for the attribute

labeling information so that κL de�nes the impli
it mapping ϕL(l):L→HL. Due

to ea
h fun
tion (κX and κL) re�e
ts a di�erent notion of similarity extra
ted

from a distin
t sample set, the 
on
ept of alignment between mappings 
an be

introdu
ed to measure the degree of agreement between the input and target

kernels. To unify both tasks into a 
oherent optimization problem, we employ

the Centered Kernel Alignment (CKA) that assesses the kernel a�nity through

the expe
ted value of their normalized inner produ
t over all data points as

follows:

ρ (κX , κL) =
Exx′ll′ {κ̄X (x, x′) κ̄L (l, l′)}

√

Exx′ {κ̄2
X
(x, x′)}Ell′ {κ̄2

L
(l, l′)}

, (1)

where notation Ez {·} stands for the expe
ted value of the random variable z,
κ̄Z (z, z′) is the 
entered version of the kernel fun
tion

κZ (z, z′)=(ϕZ(z)− ϕ̄Z)
⊤ (ϕZ(z

′)− ϕ̄Z) (2)

being ϕ̄Z∈HZ the expe
ted value of the data distribution on HZ .

In pra
ti
e, the 
hara
terizing kernel matri
es, KX∈RN×N
and KL∈R

N×N
,

are extra
ted from a provided input dataset X∈RN×P
, holding samples xn∈R

P
,

along with its 
orresponding target ve
tor l={ln⊂Z:n∈[1, N ]}∈ZN
. Hen
e, the



empiri
al estimate for the CKA value 
an be 
omputed as follows:

ρ̂
(

K̄X , K̄L

)

=
〈K̄X , K̄L〉F

√

〈K̄X , K̄X〉
F

〈K̄L, K̄L〉F
, (3)

where notation 〈·, ·〉
F

stands for the matrix-based Frobenius produ
t, and K̄=(ϕZ−
ϕ̄Z)

⊤(ϕZ − ϕ̄Z) is the 
entered kernel matrix (asso
iated with κ̄Z(, )) 
om-

puted as K̄=ĪKĪ, being 1∈RN×1
the all-ones ve
tor, I the identity matrix,

and Ī=
[

I− 11
⊤/N

]

.

Importantly, sin
e the alignment estimates the agreement between X and

L spa
es through their statisti
al dependen
e ρ∈[0, 1], then, the larger the value
of CKA, the more similar the distributions of the input and target data.

2.2 Supervised metri
 learning for 
lassi�
ation

The CKA dependen
e using the Mahalanobis metri
 learning is developed for the


ommonly used SVM approa
h that are fed into a Gaussian kernel optimization.

Gaussian Kernel Optimization for Classi�
ation: In general, the Gaussian

kernel is preferred in pattern 
lassi�
ation appli
ations sin
e it aims at �nding

an RKHS with universal approximating ability, not to mention its mathemati
al

tra
tability. Nonetheless, to a

ount for the varian
e of ea
h spa
e when measur-

ing the pairwise distan
e between samples xn and xn′
, the Gaussian kernel relies

on the generalized Eu
lidean metri
 that is parameterized by a linear proje
tion

matrix W in the form:

κX (W , σ) = exp
(

− (xn − xn′)WW⊤ (xn − xn′)
⊤
/2σ2

)

(4)

where σ∈R+
is the kernel bandwidth that rules the observation window within

the similarity distan
e is assessed.

In terms of the proje
tion matrix, the formulation of the CKA-based optimiz-

ing fun
tion in Eq (3) 
an be integrated into the following kernel-based learning

problem:

Ŵ = argmin
W

{

− log
(

ρ̂
(

K̄X(W ), K̄L

))}

, (5a)

= argmin
W

{

log
(

tr
(

KX(W )ĪKLĪ
))

− 1

2
log

(

tr
(

KX(W )ĪKX(W )Ī
))}

,

(5b)

where the logarithm fun
tion is used for mathemati
al 
onvenien
e.

Therefore, the �rst term in Eq (5b) assesses the similarity between input and

target kernels while the se
ond one works as a regularization term minimizing

the norm of the input kernel.

3 Dataset and Prepro
essing

For training the proposed metri
 learning framework, the ADNI dataset was em-

ployed. Spe
i�
ally, a subset of 3304MRI s
ans are 
onsidered from 896 subje
ts



aged from 55 to 90 years (1048 NC, 1433 MCI, and 823 AD). Provided images

are split into two subsets. The �rst one holds 30% of the subje
ts and is devoted

to a blindfolded assessment of the performan
e framework. The remaining 70%
of subje
ts is employed for framework parameter tuning, whi
h is 
arried by a

5-fold 
ross-validation s
heme to guarantee that all images of the same subje
t

are assigned to a single group of data analysis (i.e., a validation fold or the test

subset).

The set of stru
tural MRIs is automati
ally pre-pro
essed via the widely

used FreeSurfer software pa
kage

1

that 
omputes the needed morphologi
al

measurements with suitable test-retest reliability a
ross s
anner manufa
turers

and �eld strengths. As a result, an input feature matrix X with size N=3304
and P=310 is built using the features from ea
h MRI. Namely, 69 features of

Corti
al Volumes (CV), 37 features of Sub
orti
al Volumes (SV), and 68 features
of Thi
kness Average (TA), Thi
kness Std (TS) and Surfa
e Area (SA) set.

4 Results

For the sake of evaluation, the proposed methodology of training is 
ontrasted

against the 
lassi�
ation results for dementia diagnosis results in [1℄. To this end,

the a

ura
y a, true-positive rate {τHC , τMCI , τAD}, and area under the ROC

(Re
eiver operating 
urve) AUC are re
omputed following the same evaluation

s
heme, 
onsisting in bootstrapping the test set with 1000 resamples to estimate

the average and 95% 
on�den
e interval of ea
h measure.

Table 1 report the obtained results of 
onventional and CKA-enhan
ed SVM.

The darker 
ells denote the best performan
e in terms of ea
h evaluation 
riteria

and their respe
tive 
on�den
e intervals (CI). As seen in the last row, the CKA-

based metri
 learning improves every one of the evaluation measures. Therefore,

it follows that the either 
ase of the CKA metri
 learning gives rise to the


lassi�
ation performan
e.

a (CI) τHC (CI) τMCI (CI) τAD (CI)

SVM 53.7 (50.4-56.7) 58.6 (53.3-63.6) 46.5 (42.1-50.9) 59.9 (53.5-66.4)

ML + SVM 57.6 (54.3-60.7) 62.7 (57.5-67.8) 54.2 (49.4-58.4) 57.1 (50.8-63.3)

Table 1: A

ura
y performan
e measures following the validation s
heme in [1℄.

First row displays the performan
e before CKA-based metri
 learning. Bottom

row shows the performan
e after CKA.

Obtained 
lass-wise Re
eiver Operating Chara
teristi
 (ROC) 
urve for ADNI

dataset is depi
ted in Fig. 1. The Fig. 1 shows a lower area under the 
urve for

the se
ond 
lass, as the Table 1 shows the lowest a

ura
y for that 
lass. Both

fa
ts imply that MCI subje
ts are the most di�
ult to 
lassify, whi
h 
an be

1
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due to the wide spread 
lass distribution. From a morphologi
al perspe
tive, the

low a

ura
y in MCI subje
ts 
an be related to nature of su
h 
lass. Sin
e MCI

is an intermediate 
lass between Healthy and Alzheimer's Disease 
lasses, those

subje
ts tend to be more misdiagnosed than the ones belonging to NC and AD.
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Fig. 1: Obtained ROC 
urves for testing MRIs in the ADNI dataset.

5 Con
lusion

A supervised metri
 learning is introdu
ed to support MRI 
lassi�
ation. The

proposed learning de
odes dis
riminant information based on the maximization

of the similarity between the input distribution and the 
orresponding target

(diagnosis 
lasses), aiming at enhan
ing the 
lass separability. Furthermore, an

SVM is trained using the metri
 learning framework for 
lassifying three demen-

tia 
ategories (HC, MCI and AD). Evaluation of the proposed metri
 learning

framework is 
arried out on the well-known ADNI dataset, where several mor-

phologi
al measurements are extra
ted using FreeSurfer to represent ea
h MRI

s
an. Experimental results show that our proposed CKA improves the perfor-

man
e in terms of the 
lassi�
ation a

ura
y and the true positive fra
tion of

ea
h neurologi
al 
lass. In parti
ular, the ML+SVM 
lassi�er a
hieves the best

performan
e (average 57.6%), and the baseline SVM rea
hes 
ompetitive results

(53.7%). As future work, we plan to analyze other kinds of image representa-

tion strategies aiming at �nding their relevan
e for 
lass dis
rimination assessed

by the CKA 
riterion. Finally, we note that the 
lass-wise performan
e 
an be

parameterized by the introdu
ed kernel fun
tion in the target spa
e so that a

larger similarity of a parti
ular 
lass should in
rease its true positive rate.



Referen
es

1. Bron, E.E., Smits, M., Van Der Flier, W.M., Vrenken, H., Barkhof, F., S
heltens,

P., Papma, J.M., Steketee, R.M., Orellana, C.M., Meijboom, R., et al.: Standard-

ized evaluation of algorithms for 
omputer-aided diagnosis of dementia based on

stru
tural mri: The 
addementia 
hallenge. NeuroImage 111 (2015) 562�579

2. Ja
k, C.R., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen,

P.S., Shaw, L.M., Vemuri, P., Wiste, H.J., Weigand, S.D., et al.: Tra
king patho-

physiologi
al pro
esses in alzheimer's disease: an updated hypotheti
al model of

dynami
 biomarkers. The Lan
et Neurology 12(2) (2013) 207�216

3. Liu, F., Zhou, L., Shen, C., Yin, J.: Multiple kernel learning in the primal for

multimodal alzheimer's disease 
lassi�
ation. IEEE journal of biomedi
al and health

informati
s 18(3) (2014) 984�990

4. Shi, B., Chen, Y., Hobbs, K., Smith, C.D., Liu, J.: Nonlinear metri
 learning for

alzheimer's disease diagnosis with integration of longitudinal neuroimaging features.

In: BMVC. (2015) 138�1

5. Tustison, N.J., Cook, P.A., Klein, A., Song, G., Das, S.R., Duda, J.T., Kandel,

B.M., van Strien, N., Stone, J.R., Gee, J.C., et al.: Large-s
ale evaluation of ants

and freesurfer 
orti
al thi
kness measurements. Neuroimage 99 (2014) 166�179

6. Wa
hinger, C., Reuter, M., Initiative, A.D.N., et al.: Domain adaptation for

alzheimer's disease diagnosti
s. Neuroimage 139 (2016) 470�479

7. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., Initiative, A.D.N., et al.: Mul-

timodal 
lassi�
ation of alzheimer's disease and mild 
ognitive impairment. Neu-

roimage 55(3) (2011) 856�867


	CADDementia based on structural MRI using Supervised Kernel Metric Learning
	Introduction
	Proposed Algorithm Description
	Centered kernel alignment
	Supervised metric learning for classification

	Dataset and Preprocessing
	Results
	Conclusion


