CADDementia based on structural MRI using
Supervised Kernel Metric Learning

D. Cardenas-Pena, D. Collazos-Huertas, and G. Castellanos-Dominguez

Signal Processing and Recognition Group
Universidad Nacional de Colombia
Campus La Nubia, km 7 via al Magdalena, Manizales-Colombia
{dcardenasp, dfcollazosh, cgcastellanosd}@unal.edu.co

Abstract. Recently, computer-aided diagnosis tools for dementia using
Magnetic Resonance Imaging scans have been successfully proposed to
support reliable researches on intervention, prevention, and treatments of
Alzheimer’s disease. However, is necessary to improve the performance of
classification machines. As an alternative, a supervised kernel framework
for learning metrics that enhances conventional machines and supports
the diagnosis of dementia is proposed. Therefore, the proposed metric
learning produces discriminative features aimed at improving the dis-
crimination neurological classes. The testing stage is carried out using
the ADNI dataset to train the commonly used supervised classification
machine, namely, support vector machine (SVM). Attained classification
results (57.6% average accuracy) prove that our framework is able to
discriminate dementia patients.

1 Introduction

For Alzheimer’s Disease (AD), the use of structural magnetic resonance imaging
(MRI) data became a suitable alternative to develop computer-aided diagnosis
(CAD) tools due to its wide availability and non-invasiveness [2]. Nonetheless, the
most of researches has been focusing on discriminating pathologies with a variety
of classification tools from neuroimaging data, genetic information, and other
biomarkers. Hence, insufficient attention has been given to build appropriate
metrics from the training data that could maximize the performance of several
classifiers [4].

Some approaches that introduce a metric learning stage into the MRI dis-
crimination process are the following: In the case of linear models, [6] stacks
PCA matrices and logistic regressors in a multi-layer architecture. However, the
generative properties of the resulting machine highlight over the discriminative
ones. In addition, when handling data distributions with nonlinear structures,
linear models show inherently limited performance and class separation capa-
bility. On the other hand, the most popular nonlinear models are built through
kernel-based methods. In [7] combines three different biomarkers using a simple-
while-effective multiple-kernel learning for improving the SVM-based classifica-
tion of AD and MCI. However, optimization of kernel weighting is carried out



by a grid search, which is very time consuming when the number of features and
samples gets large [3].

In order to enhance the MRI discrimination, we introduce a kernel-based
metric learning framework for supporting the dementia diagnosis task. The pro-
posed approach searches for projections into more discriminative spaces so that
the resulting data distribution resembles as much as possible the label distri-
bution. Hence, we incorporate kernel theory for assessing the affinity between
projected data and available labels through the Center Kernel Alignment (CKA)
criterion. To this end, we use morphological measurements (volume, area, and
thickness) computed by the widely used FreeSurfer suite [5]. The proposed ap-
proach is tested on MRI data discrimination using dementia categories (namely,
Normal Control (NC), Mild Cognitive Impairment (MCI) and Alzheimer’s Dis-
ease (AD)).

2 Proposed Algorithm Description

2.1 Centered kernel alignment

Kernel functions are bivariate measures of similarity, which are based on the
inner product between samples embedded in a Hilbert space. For an input feature
space 2, a kernel kx: 2 xZ —RT is a positive-definite function that defines an
implicit mapping ¢x: 2 —#%, aiming to embed a data point €2 into the
element x (z)€.#% of some Reproducing Kernel Hilbert Space (RKHS) (noted
as ). Within a supervised learning framework, a kernel rp:¥xZ—RT is
also introduced that acts over the target space £ to account for the attribute
labeling information so that x, defines the implicit mapping ¢y, (1):-¢—57.. Due
to each function (kx and kr) reflects a different notion of similarity extracted
from a distinct sample set, the concept of alignment between mappings can be
introduced to measure the degree of agreement between the input and target
kernels. To unify both tasks into a coherent optimization problem, we employ
the Centered Kernel Alignment (CKA) that assesses the kernel affinity through
the expected value of their normalized inner product over all data points as
follows:
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where notation E, {-} stands for the expected value of the random variable z,
Rz (z,2") is the centered version of the kernel function

(1)

pkx, kL) =
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being ¢z €57 the expected value of the data distribution on 7.

In practice, the characterizing kernel matrices, Kx€R™V and KypcRN*N,
are extracted from a provided input dataset X €RY*F holding samples x, €R”,
along with its corresponding target vector 1={l,,CZ:n€[l, N]}€Z". Hence, the



empirical estimate for the CKA value can be computed as follows:
<KX; KL>F
V(Ex,Kx)e(KL, Kp)r

where notation (-, -)r stands for the matrix-based Frobenius product, and K=(pz—
®7) (pz — @z) is the centered kernel matrix (associated with &z(,)) com-
puted as K=IKI, being 1cRN*! the all-ones vector, I the identity matrix,
and I=[I- 11"/N].

Importantly, since the alignment estimates the agreement between 2 and
% spaces through their statistical dependence p€0, 1], then, the larger the value
of CKA, the more similar the distributions of the input and target data.

p(Kx,KL) =

(3)

2.2 Supervised metric learning for classification

The CKA dependence using the Mahalanobis metric learning is developed for the
commonly used SVM approach that are fed into a Gaussian kernel optimization.

Gaussian Kernel Optimization for Classification: In general, the Gaussian
kernel is preferred in pattern classification applications since it aims at finding
an RKHS with universal approximating ability, not to mention its mathematical
tractability. Nonetheless, to account for the variance of each space when measur-
ing the pairwise distance between samples x,, and x,, the Gaussian kernel relies
on the generalized Euclidean metric that is parameterized by a linear projection
matrix W in the form:

kx (W,0) = exp (_ (@ — 20 ) WW T (@0 — ) /202) (4)

where 0€R™ is the kernel bandwidth that rules the observation window within
the similarity distance is assessed.

In terms of the projection matrix, the formulation of the CKA-based optimiz-
ing function in Eq (3) can be integrated into the following kernel-based learning
problem:

Wzargrré‘i/n{—log(ﬁ (Kx(W),K.))}, (5a)
= argrré‘i/n {log (tr (Kx(W)IK_I)) — $log (tr (Kx(W)IKx(W)I))},
(5b)

where the logarithm function is used for mathematical convenience.

Therefore, the first term in Eq (5b) assesses the similarity between input and
target kernels while the second one works as a regularization term minimizing
the norm of the input kernel.

3 Dataset and Preprocessing

For training the proposed metric learning framework, the ADNI dataset was em-
ployed. Specifically, a subset of 3304 MRI scans are considered from 896 subjects



aged from 55 to 90 years (1048 NC, 1433 MCI, and 823 AD). Provided images
are split into two subsets. The first one holds 30% of the subjects and is devoted
to a blindfolded assessment of the performance framework. The remaining 70%
of subjects is employed for framework parameter tuning, which is carried by a
5-fold cross-validation scheme to guarantee that all images of the same subject
are assigned to a single group of data analysis (i.e., a validation fold or the test
subset).

The set of structural MRIs is automatically pre-processed via the widely
used FreeSurfer software package ' that computes the needed morphological
measurements with suitable test-retest reliability across scanner manufacturers
and field strengths. As a result, an input feature matrix X with size N=3304
and P=310 is built using the features from each MRI. Namely, 69 features of
Cortical Volumes (CV), 37 features of Subcortical Volumes (SV), and 68 features
of Thickness Average (TA), Thickness Std (TS) and Surface Area (SA) set.

4 Results

For the sake of evaluation, the proposed methodology of training is contrasted
against the classification results for dementia diagnosis results in [1]. To this end,
the accuracy a, true-positive rate {Tgc, Tmcr, Tap}, and area under the ROC
(Receiver operating curve) AUC are recomputed following the same evaluation
scheme, consisting in bootstrapping the test set with 1000 resamples to estimate
the average and 95% confidence interval of each measure.

Table 1 report the obtained results of conventional and CKA-enhanced SVM.
The darker cells denote the best performance in terms of each evaluation criteria
and their respective confidence intervals (CI). As seen in the last row, the CKA-
based metric learning improves every one of the evaluation measures. Therefore,
it follows that the either case of the CKA metric learning gives rise to the
classification performance.

a (CI) THC (CI) TMCI (CI) TAD (CI)
SVM 53.7 (50.4-56.7) 58.6 (53.3-63.6) 46.5 (42.1-50.9) 59.9 (53.5-66.4)

Table 1: Accuracy performance measures following the validation scheme in [1].
First row displays the performance before CKA-based metric learning. Bottom
row shows the performance after CKA.

Obtained class-wise Receiver Operating Characteristic (ROC) curve for ADNI
dataset is depicted in Fig. 1. The Fig. 1 shows a lower area under the curve for
the second class, as the Table 1 shows the lowest accuracy for that class. Both
facts imply that MCI subjects are the most difficult to classify, which can be
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due to the wide spread class distribution. From a morphological perspective, the
low accuracy in MCI subjects can be related to nature of such class. Since MCI
is an intermediate class between Healthy and Alzheimer’s Disease classes, those
subjects tend to be more misdiagnosed than the ones belonging to NC and AD.
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Fig. 1: Obtained ROC curves for testing MRIs in the ADNI dataset.

5 Conclusion

A supervised metric learning is introduced to support MRI classification. The
proposed learning decodes discriminant information based on the maximization
of the similarity between the input distribution and the corresponding target
(diagnosis classes), aiming at enhancing the class separability. Furthermore, an
SVM is trained using the metric learning framework for classifying three demen-
tia categories (HC, MCI and AD). Evaluation of the proposed metric learning
framework is carried out on the well-known ADNI dataset, where several mor-
phological measurements are extracted using FreeSurfer to represent each MRI
scan. Experimental results show that our proposed CKA improves the perfor-
mance in terms of the classification accuracy and the true positive fraction of
each neurological class. In particular, the ML4+SVM classifier achieves the best
performance (average 57.6%), and the baseline SVM reaches competitive results
(53.7%). As future work, we plan to analyze other kinds of image representa-
tion strategies aiming at finding their relevance for class discrimination assessed
by the CKA criterion. Finally, we note that the class-wise performance can be
parameterized by the introduced kernel function in the target space so that a
larger similarity of a particular class should increase its true positive rate.
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